sábado, 26 de setembro de 2009

A Pesquisa em Hidrogênio

Reconhecendo o potencial do hidrogênio combustível, o Departamento de Energia dos Estados Unidos e organizações privadas fundaram programas de Pesquisa e Desenvolvimento (P&D) por muitos anos. O Governo Federal americano aloca em média 18 milhões de dólares por ano na pesquisa de hidrogênio combustível. Os trabalhos atuais nos Estados Unidos incluem pesquisas no Laboratório Nacional de Energia Renovável, na Universidade A & M, Texas, no Laboratório Nacional de Brookhaven, e no Instituto de Energia Neutra Hawaii.

O Centro de Energia Solar na Flórida conduz pesquisas em hidrogênio pelo Programa de Energia Renovável, com objetivos de longo prazo sob a orientação do Departamento de Energia dos Estados Unidos para o desenvolvimento de um reator para fotoeletricamente decompor a água em hidrogênio e oxigênio e para sintetizar quimicamente uma membrana eletrolítica para eletrólise sob altas temperaturas. Outra pesquisa do Departamento de Energia é o desenvolvimento de um processo para reformar o gás natural ao hidrogênio para produção on-site de blendas de hidrogênio-metano que sejam aplicáveis a automóveis.

Para que se possa utilizar hidrogênio em larga escala, os pesquisadores devem desenvolver meios mais práticos e econômicos para estocar e produzir o hidrogênio.

O Custo do Hidrogênio

Atualmente, a maneira economicamente mais viável para se produzir hidrogênio é pela reforma de vapor. De acordo com o Departamento de Energia dos Estados Unidos, em 1995 o custo estava em US$7,39 por milhão de BTU (US$7,00 por gigajoule) em plantas de grande escala. Este cálculo assume o custo do gás natural de US$2,43 por milhão de BTU (US$2,30 por gigajoule). Isto equivalente a US$0,93 por galão ($0,24 por litro) de gasolina. A produção de hidrogênio por eletrólise utilizando hidroeletricidade, considerando taxas de horários de baixo consumo, custa entre US$10,55 e US$21,10 por milhão de BTU (US$10,00 a US$20,00 por gigajoule).

A Estocagem de Hidrogênio: Um Problema Ainda Não Resolvido

Para se utilizar o hidrogênio em larga escala de maneira segura, sistemas práticos de estocagem devem ser desenvolvidos, especialmente para os automóveis. Apesar de o hidrogênio poder ser estocado no estado líquido, este é um processo difícil porque deve ser resfriado a -253ºC. A refrigeração do hidrogênio a esta temperatura utiliza o equivalente a 25 ou 30% de sua energia total, e requer materiais e manipulação especiais. Para resfriar aproximadamente 0,5kg de hidrogênio são necessários 5kWh de energia elétrica.

O hidrogênio também pode ser armazenado como gás, que utiliza muito menos energia que aquela necessária para fazer hidrogênio líquido. Sendo estocado no estado gasoso, deve ser pressurizado para se estocar uma quantidade razoável. Para utilização em larga escala, o gás pressurizado pode ser estocado em cavernas ou minas. O gás hidrogênio pode então ser encanado e levado às residências da mesma maneira que o gás natural. Apesar desta técnica de estocagem ser útil para a utilização do hidrogênio como combustível de aquecimento, não o é para utilização em veículos porque os tanques de metal pressurizados necessários para estocar o hidrogênio são muito caros.

Um método de estocagem de hidrogênio potencialmente mais eficiente é na forma de hidretos. Os hidretos são compostos químicos formados por hidrogênio e um metal. As pesquisas atuais estão focando o hidreto de magnésio. Certas ligas metálicas como as de magnésio-níquel, magnésio-cobre e ferro-titânio, absorvem hidrogênio e o liberam quando aquecidos. Os hidretos, entretanto, estocam pouca energia por unidade de massa. As pesquisas atualmente procuram um composto que seja capaz de armazenar uma grande quantidade de hidrogênio com uma elevada densidade energética, liberar o hidrogênio como combustível, reagir rapidamente e possuir um custo acessível.

Usos Potenciais para o Hidrogênio

Os setores de transporte, industrial e residencial nos Estados Unidos têm utilizado hidrogênio há muitos anos. No início do século XIX muitas pessoas utilizaram um combustível denominado "gás da cidade", que era uma mistura de hidrogênio e monóxido de carbono. Muitos países, incluindo o Brasil e a Alemanha, continuam distribuindo este combustível. Aeronaves (dirigíveis e balões) usam hidrogênio para transporte. Atualmente, algumas indústrias utilizam hidrogênio para refinar petróleo, e para produzir amônia e metanol. As naves espaciais utilizam hidrogênio como combustível para seus foguetes.

Com pesquisas futuras, o hidrogênio pode fornecer eletricidade e combustível para os setores residencial, comercial, industrial e de transporte, criando uma nova economia energética.

Quando armazenado adequadamente, o hidrogênio combustível pode ser queimado tanto no estado gasoso quanto no líquido. Os motores de veículos e os fornos industriais podem facilmente ser convertidos para utilizar hidrogênio como combustível.

Desde a década de 1950, o hidrogênio abastece alguns aviões. Fabricantes de automóveis desenvolveram carros movidos a hidrogênio. A queima de hidrogênio é 50% mais eficiente que a da gasolina e gera menos poluição ambiental. O hidrogênio apresenta uma maior velocidade de combustão, limites mais altos de inflamabilidade, temperaturas de detonação mais altas, queima mais quente e necessita de menor energia de ignição que a gasolina. Isto quer dizer que o hidrogênio queima mais rapidamente, mas traz consigo os perigos de pré-ignição e flashback.

Apesar de o hidrogênio apresentar suas vantagens como combustível para veículos, ainda tem um longo caminho de desenvolvimento a percorrer antes de poder ser utilizado como um substituto para a gasolina.

As células de energia utilizam um tipo de tecnologia que usam o hidrogênio para produzir energia útil. Nestas células, o processo de eletrólise é revertido para combinar o hidrogênio e o oxigênio através de um processo eletroquímico, que produz eletricidade, calor e água. O Programa Espacial dos Estados Unidos tem utilizado as células de energia para fornecer eletricidade às cápsulas espaciais há décadas. Células de energia capazes de fornecer eletricidade para mover os motores de automóveis e ônibus têm sido desenvolvidas. Muitas companhias estão desenvolvendo células de energia para usinas estacionárias.

Uma célula de energia funciona como uma bateria que nunca pára de funcionar e não precisa de recarga. Ela irá produzir eletricidade e calor sempre que um combustível (no caso, o hidrogênio) for fornecido. Uma célula de energia consiste de dois eletrodos - um negativo (ânodo) e um positivo (cátodo) - imersos em um eletrólito. O hidrogênio é inserido na célula pelo anodo, e o oxigênio pelo catodo. Ativados por um catalisador, os átomos de hidrogênio separam-se em prótons e elétrons, que tomam caminhos diferentes no cátodo. Os elétrons saem por um circuito externo, gerando eletricidade. Os prótons migram através do eletrólito ao cátodo, onde reúnem-se com o oxigênio e os elétrons para gerar água e calor. As células de energia podem ser utilizadas para mover os motores de veículos ou para fornecer eletricidade e calor às edificações.

O hidrogênio pode ser considerado como uma forma de armazenar energia produzida de fontes renováveis como a solar, eólica, hídrica, geotérmica o biológica. Por exemplo, quando o sol estiver se pondo, sistemas fotovoltaicos podem fornecer a eletricidade necessária para produzir o hidrogênio por eletrólise. O hidrogênio pode então ser estocado e queimado como um combustível, ou para operar uma célula de energia para gerar eletricidade à noite ou sob tempo nebuloso.

O Hidrogênio como Combustível

Desde o início do século XIX, os cientistas identificaram o hidrogênio como uma fonte potencial de combustível. Os usos atuais do hidrogênio incluem processos industriais, combustível para foguetes e propulsão para cápsulas espaciais. Com pesquisa e desenvolvimento mais avançados, este combustível também pode ser utilizado como uma fonte alternativa de energia para o aquecimento e iluminação de residências, geração de eletricidade e como combustível de automóveis. Quando produzido de fontes e tecnologias renováveis, como hidráulica, solar ou eólica, o hidrogênio torna-se um combustível renovável

quinta-feira, 24 de setembro de 2009

Produção de hidrogênio utilizando energia solar atinge 70% de eficiência


Foi construído um reator extremamente simples tecnicamente, capaz de produzir hidrogênio - o combustível do futuro - a partir da água, utilizando apenas a energia solar. Hoje, virtualmente todo o hidrogênio utilizado na indústria é produzido a partir da queima de gás natural - um combustível fóssil.

Produção de hidrogênio

O princípio é parecido com o divulgado por outra equipe de cientistas em 2003 (veja Hidrogênio para células a combustível gerado por energia solar), só que o processo é muito mais eficiente. Enquanto a pesquisa original alcançou 30% de eficiência usando a porção infravermelha da luz do Sol, o novo reator atinge 70%, usando a energia térmica da luz solar.

O trabalho está sendo coordenado pelo Dr. Anthanasios Konstandopoulos, que chefia o projeto europeu Hydrosol. O objetivo do projeto é exatamente produzir hidrogênio exclusivamente a partir de fontes renováveis.

Combustível alternativo

Se existe um consenso hoje no campo da energia, esse consenso está na necessidade de se encontrar uma alternativa para os combustíveis fósseis. As pesquisas mostram que o candidato natural para ocupar o posto de fonte de energia limpa em escala planetária é o hidrogênio. Só que o hidrogênio é altamente reativo e não é encontrado livre na atmosfera - mesmo sendo o elemento mais abundante na Terra.

E a maior parte do hidrogênio hoje é produzida a partir do gás natural, um combustível fóssil. Logo, não é o hidrogênio em si, mas o seu método de fabricação que decidirá se a nova fonte de energia será ambientalmente amigável ou não.

Reator solar

O novo reator, criado pelos pesquisadores do projeto Hydrosol, já está sendo testado na Grécia. Ele usa o conteúdo termal da energia solar para quebrar as moléculas de água em hidrogênio e oxigênio, dispensando sua transformação em eletricidade.

O reator solar consiste em um corpo de cerâmica porosa, cujos canais são revestidos por um catalisador especial nano-particulado. Um conjunto de espelhos concentra a luz do sol, fazendo a água se transformar em vapor, que é forçado a passar pelos microcanais da cerâmica. Aí, o catalisador efetua a quebra das moléculas de água. A eficiência chega a 70%.