sábado, 26 de setembro de 2009

A Pesquisa em Hidrogênio

Reconhecendo o potencial do hidrogênio combustível, o Departamento de Energia dos Estados Unidos e organizações privadas fundaram programas de Pesquisa e Desenvolvimento (P&D) por muitos anos. O Governo Federal americano aloca em média 18 milhões de dólares por ano na pesquisa de hidrogênio combustível. Os trabalhos atuais nos Estados Unidos incluem pesquisas no Laboratório Nacional de Energia Renovável, na Universidade A & M, Texas, no Laboratório Nacional de Brookhaven, e no Instituto de Energia Neutra Hawaii.

O Centro de Energia Solar na Flórida conduz pesquisas em hidrogênio pelo Programa de Energia Renovável, com objetivos de longo prazo sob a orientação do Departamento de Energia dos Estados Unidos para o desenvolvimento de um reator para fotoeletricamente decompor a água em hidrogênio e oxigênio e para sintetizar quimicamente uma membrana eletrolítica para eletrólise sob altas temperaturas. Outra pesquisa do Departamento de Energia é o desenvolvimento de um processo para reformar o gás natural ao hidrogênio para produção on-site de blendas de hidrogênio-metano que sejam aplicáveis a automóveis.

Para que se possa utilizar hidrogênio em larga escala, os pesquisadores devem desenvolver meios mais práticos e econômicos para estocar e produzir o hidrogênio.

O Custo do Hidrogênio

Atualmente, a maneira economicamente mais viável para se produzir hidrogênio é pela reforma de vapor. De acordo com o Departamento de Energia dos Estados Unidos, em 1995 o custo estava em US$7,39 por milhão de BTU (US$7,00 por gigajoule) em plantas de grande escala. Este cálculo assume o custo do gás natural de US$2,43 por milhão de BTU (US$2,30 por gigajoule). Isto equivalente a US$0,93 por galão ($0,24 por litro) de gasolina. A produção de hidrogênio por eletrólise utilizando hidroeletricidade, considerando taxas de horários de baixo consumo, custa entre US$10,55 e US$21,10 por milhão de BTU (US$10,00 a US$20,00 por gigajoule).

A Estocagem de Hidrogênio: Um Problema Ainda Não Resolvido

Para se utilizar o hidrogênio em larga escala de maneira segura, sistemas práticos de estocagem devem ser desenvolvidos, especialmente para os automóveis. Apesar de o hidrogênio poder ser estocado no estado líquido, este é um processo difícil porque deve ser resfriado a -253ºC. A refrigeração do hidrogênio a esta temperatura utiliza o equivalente a 25 ou 30% de sua energia total, e requer materiais e manipulação especiais. Para resfriar aproximadamente 0,5kg de hidrogênio são necessários 5kWh de energia elétrica.

O hidrogênio também pode ser armazenado como gás, que utiliza muito menos energia que aquela necessária para fazer hidrogênio líquido. Sendo estocado no estado gasoso, deve ser pressurizado para se estocar uma quantidade razoável. Para utilização em larga escala, o gás pressurizado pode ser estocado em cavernas ou minas. O gás hidrogênio pode então ser encanado e levado às residências da mesma maneira que o gás natural. Apesar desta técnica de estocagem ser útil para a utilização do hidrogênio como combustível de aquecimento, não o é para utilização em veículos porque os tanques de metal pressurizados necessários para estocar o hidrogênio são muito caros.

Um método de estocagem de hidrogênio potencialmente mais eficiente é na forma de hidretos. Os hidretos são compostos químicos formados por hidrogênio e um metal. As pesquisas atuais estão focando o hidreto de magnésio. Certas ligas metálicas como as de magnésio-níquel, magnésio-cobre e ferro-titânio, absorvem hidrogênio e o liberam quando aquecidos. Os hidretos, entretanto, estocam pouca energia por unidade de massa. As pesquisas atualmente procuram um composto que seja capaz de armazenar uma grande quantidade de hidrogênio com uma elevada densidade energética, liberar o hidrogênio como combustível, reagir rapidamente e possuir um custo acessível.

Usos Potenciais para o Hidrogênio

Os setores de transporte, industrial e residencial nos Estados Unidos têm utilizado hidrogênio há muitos anos. No início do século XIX muitas pessoas utilizaram um combustível denominado "gás da cidade", que era uma mistura de hidrogênio e monóxido de carbono. Muitos países, incluindo o Brasil e a Alemanha, continuam distribuindo este combustível. Aeronaves (dirigíveis e balões) usam hidrogênio para transporte. Atualmente, algumas indústrias utilizam hidrogênio para refinar petróleo, e para produzir amônia e metanol. As naves espaciais utilizam hidrogênio como combustível para seus foguetes.

Com pesquisas futuras, o hidrogênio pode fornecer eletricidade e combustível para os setores residencial, comercial, industrial e de transporte, criando uma nova economia energética.

Quando armazenado adequadamente, o hidrogênio combustível pode ser queimado tanto no estado gasoso quanto no líquido. Os motores de veículos e os fornos industriais podem facilmente ser convertidos para utilizar hidrogênio como combustível.

Desde a década de 1950, o hidrogênio abastece alguns aviões. Fabricantes de automóveis desenvolveram carros movidos a hidrogênio. A queima de hidrogênio é 50% mais eficiente que a da gasolina e gera menos poluição ambiental. O hidrogênio apresenta uma maior velocidade de combustão, limites mais altos de inflamabilidade, temperaturas de detonação mais altas, queima mais quente e necessita de menor energia de ignição que a gasolina. Isto quer dizer que o hidrogênio queima mais rapidamente, mas traz consigo os perigos de pré-ignição e flashback.

Apesar de o hidrogênio apresentar suas vantagens como combustível para veículos, ainda tem um longo caminho de desenvolvimento a percorrer antes de poder ser utilizado como um substituto para a gasolina.

As células de energia utilizam um tipo de tecnologia que usam o hidrogênio para produzir energia útil. Nestas células, o processo de eletrólise é revertido para combinar o hidrogênio e o oxigênio através de um processo eletroquímico, que produz eletricidade, calor e água. O Programa Espacial dos Estados Unidos tem utilizado as células de energia para fornecer eletricidade às cápsulas espaciais há décadas. Células de energia capazes de fornecer eletricidade para mover os motores de automóveis e ônibus têm sido desenvolvidas. Muitas companhias estão desenvolvendo células de energia para usinas estacionárias.

Uma célula de energia funciona como uma bateria que nunca pára de funcionar e não precisa de recarga. Ela irá produzir eletricidade e calor sempre que um combustível (no caso, o hidrogênio) for fornecido. Uma célula de energia consiste de dois eletrodos - um negativo (ânodo) e um positivo (cátodo) - imersos em um eletrólito. O hidrogênio é inserido na célula pelo anodo, e o oxigênio pelo catodo. Ativados por um catalisador, os átomos de hidrogênio separam-se em prótons e elétrons, que tomam caminhos diferentes no cátodo. Os elétrons saem por um circuito externo, gerando eletricidade. Os prótons migram através do eletrólito ao cátodo, onde reúnem-se com o oxigênio e os elétrons para gerar água e calor. As células de energia podem ser utilizadas para mover os motores de veículos ou para fornecer eletricidade e calor às edificações.

O hidrogênio pode ser considerado como uma forma de armazenar energia produzida de fontes renováveis como a solar, eólica, hídrica, geotérmica o biológica. Por exemplo, quando o sol estiver se pondo, sistemas fotovoltaicos podem fornecer a eletricidade necessária para produzir o hidrogênio por eletrólise. O hidrogênio pode então ser estocado e queimado como um combustível, ou para operar uma célula de energia para gerar eletricidade à noite ou sob tempo nebuloso.

O Hidrogênio como Combustível

Desde o início do século XIX, os cientistas identificaram o hidrogênio como uma fonte potencial de combustível. Os usos atuais do hidrogênio incluem processos industriais, combustível para foguetes e propulsão para cápsulas espaciais. Com pesquisa e desenvolvimento mais avançados, este combustível também pode ser utilizado como uma fonte alternativa de energia para o aquecimento e iluminação de residências, geração de eletricidade e como combustível de automóveis. Quando produzido de fontes e tecnologias renováveis, como hidráulica, solar ou eólica, o hidrogênio torna-se um combustível renovável

quinta-feira, 24 de setembro de 2009

Produção de hidrogênio utilizando energia solar atinge 70% de eficiência


Foi construído um reator extremamente simples tecnicamente, capaz de produzir hidrogênio - o combustível do futuro - a partir da água, utilizando apenas a energia solar. Hoje, virtualmente todo o hidrogênio utilizado na indústria é produzido a partir da queima de gás natural - um combustível fóssil.

Produção de hidrogênio

O princípio é parecido com o divulgado por outra equipe de cientistas em 2003 (veja Hidrogênio para células a combustível gerado por energia solar), só que o processo é muito mais eficiente. Enquanto a pesquisa original alcançou 30% de eficiência usando a porção infravermelha da luz do Sol, o novo reator atinge 70%, usando a energia térmica da luz solar.

O trabalho está sendo coordenado pelo Dr. Anthanasios Konstandopoulos, que chefia o projeto europeu Hydrosol. O objetivo do projeto é exatamente produzir hidrogênio exclusivamente a partir de fontes renováveis.

Combustível alternativo

Se existe um consenso hoje no campo da energia, esse consenso está na necessidade de se encontrar uma alternativa para os combustíveis fósseis. As pesquisas mostram que o candidato natural para ocupar o posto de fonte de energia limpa em escala planetária é o hidrogênio. Só que o hidrogênio é altamente reativo e não é encontrado livre na atmosfera - mesmo sendo o elemento mais abundante na Terra.

E a maior parte do hidrogênio hoje é produzida a partir do gás natural, um combustível fóssil. Logo, não é o hidrogênio em si, mas o seu método de fabricação que decidirá se a nova fonte de energia será ambientalmente amigável ou não.

Reator solar

O novo reator, criado pelos pesquisadores do projeto Hydrosol, já está sendo testado na Grécia. Ele usa o conteúdo termal da energia solar para quebrar as moléculas de água em hidrogênio e oxigênio, dispensando sua transformação em eletricidade.

O reator solar consiste em um corpo de cerâmica porosa, cujos canais são revestidos por um catalisador especial nano-particulado. Um conjunto de espelhos concentra a luz do sol, fazendo a água se transformar em vapor, que é forçado a passar pelos microcanais da cerâmica. Aí, o catalisador efetua a quebra das moléculas de água. A eficiência chega a 70%.

quarta-feira, 23 de setembro de 2009

São Paulo tem o 1º ônibus a hidrogênio da América Latina

O ônibus Brasileiro movido a Hidrogênio

água no escapamento

O ônibus Brasileiro a Hidrogênio foi apresentado nesta quarta-feira (1/7) em São Paulo, e começara a a circular em testes na Região Metropolitana a partir de agosto.
A novidade é o uso do hidrogênio como combustível, liberando apenas vapor de água no escapamento. O hidrogênio é o elemento químico mais abundante da Terra, embora ele não ocorra livre na atmosfera, devendo ser produzido industríalmente.

Com a construção do primeiro veículo do tipo na América Latina, o Brasil passa a ter posição global de destaque nesta tecnologia, ao lado dos Estados Unidos, da Alemanha e da China.

Como funciona o ônibus a hidrogênio

O ônibus brasileiro a hidrogênio é movido a tração elétrica. O processo de propulsão
movimentação)do veículo ocorre quando o hidrogênio armazenado nos tanques do ônibus é injetado na célula a combustível
Lá ocorre um processo eletroquímico que produz energia elétrica por meio da fusão do hidrogênio com o oxigênio do ar, liberando água como subproduto.

O sistema de célula a combustível não produz nenhum tipo de poluente.
O diferente dos ônibus com motores a diesel, no qual a energia térmica
é transformada em energia mecânica, ao mesmo tempo em que o combustível queimado gera resíduos poluentes.

A energia elétrica, depois de armazenada nas baterias, movimenta o motor elétrico de traçãoo (similar ao de um trãlebus), instalado no eixo traseiro do ônibus gerando energia mecânica

Propulsão Híbrida.

O ônibus é híbrido (célula a combustível a hidrogênio + três baterias de alto desempenho) e possui autonomia de rodagem de 300 km com o uso do hidrogênio. Se necessário, consegue rodar mais 40 km utilizando a energia reservada nas baterias. Pode ser operado exclusivamente com as células a combustível, somente com as baterias ou utilizar os dois sistemas simultaneamente.

O veículo tem capacidade para armazenar 45 kg de hidrogênio em nove tanques e sua m
édia de consumo é de 15 kg de hidrogênio a cada 100 km percorridos.

O ônibus também conta com um dispositivo de regeneração do sistema de frenagem (aproveitamento do calor), semelhante ao empregado na Fórmula 1, no qual a energia é armazenada nas baterias e usada na necessidade de maior potência na movimentação do veículo (em subidas, por exemplo).

"O Brasil é um dos cinco países do mundo que dominam a tecnologia e que t
êm ônibus movidos a hidrogênio. Também é importante salientar que somos o
único, entre esses países, que detêm uma tecnologia híbrida, como segunda opção para o ônibus a hidrogênio: a eletricidade", disse o governador José Serra durante a apresentação.

Produção de hidrogênio

Construído em Caxias do Sul (RS) pela Tuttotrasporti e pela Marcopolo, o protótipo passou pelos testes automotivos necessários para a sua homologação. Os outros três veículos serão incluídos no sistema a partir de 2010.

O projeto prevê a fabricação de até quatro veículos, mais a montagem da estação de produção de hidrogênio e abastecimento dos ônibus, em São Bernardo do Campo, com o apoio técnico da Petrobras, da BR Distribuidora e da AES Eletropaulo.

O projeto começou há 15 anos quando a Empresa Metropolitana de Transportes Urbanos de São Paulo, empresa vinculada á Secretaria de Estado dos Transportes Metropolitanos (EMTU/SP), e o Ministério das Minas e Energia iniciaram estudos para o uso do hidrogênio como combustível em ônibus urbanos.

O Programa das Nações Unidas para o Desenvolvimento (Pnud) destinou US$ 16 milh�es do Global Environmental Facility (GEF) para a iniciativa. O Brasil foi beneficiado com o financiamento por ser um país de economia emergente, maior produtor (50 mil unidades por ano) e o maior mercado consumidor de ônibus do mundo.

Testes dos ônibus a hidrogênio

A EMTU/SP, coordenadora nacional do projeto, será responsável pelo acompanhamento e avaliação do desempenho dos veículos que circularão nas 13 linhas do Corredor Metropolitano ABD (São Mateus / Jabaquara), operado pela concessionária Metra.

"Será um teste muito importante do ponto de vista operacional, pois é preciso examinar a economicidade e a viabilidade econômica do projeto. O projeto vale um grande investimento inicial porque se trata de uma tecnologia e uma forma nova de transporte", disse Serra.

Esse trabalho será feito até 2011 com os quatro ônibus previstos no projeto. Após o período de testes, os veículos serão incorporados á frota operacional do corredor.

Carro movido a Hidrogênio

O primeiro automóvel movido a Hidrogénio, feito em série pela Honda.

Bomba de Hidrogênio

Teste que consistiu na primeira detonação da bomba de Hidrogênio nas Ilhas Marshall em 1 de Março de 1954






Testes Nucleares: Castle Bravo, uma bomba de hidrogênio de 15-megatons, é detonada no Atol de Bikini nas Ilhas Marshall no Oceano Pacífico, resultando na pior contaminação radioativa provocada pelos Estados Unidos


As Ilhas Marshall são um país da Micronésia, cujos vizinhos mais próximos são Kiribati, a sul, os Estados Federados da Micronésia, a oeste, e a ilha Wake, pertencente aos Estados Unidos da América, a norte.

Embora tenha a constituição de uma república, este território é um "Estado Livremente Associado" aos Estados Unidos da América.

O “Castle Bravo”, nome em código dado para o primeiro teste dos Estados Unidos de uma bomba de hidrogênio, foi detonado em 1º março de 1954. Era uma bomba de hidrogênio de 15-megatons, detonada no Atol de Bikini nas Ilhas Marshall no Oceano Pacífico, resultando na pior contaminação radioativa provocada pelos Estados Unidos.

Este o primeiro teste da Operação Castelo (seguido por uma série de testes de vários dispositivos), era para ser um teste secreto, mas acabou envenenado os habitantes das ilhas ao seu redor, bem como a tripulação do Daigo Fukuryū Maru ("Lucky Dragon Nº 5"), um barco de pesca japonês, criando preocupação internacional sobre os testes termonucleares na atmosfera.

O desenho da arma era, basicamente, uma nova forma de bomba de hidrogênio, tendo os cientistas subestimado o quão vigorosamente alguns dos materiais empregados na arma viriam a reagir. Como resultado, a explosão - com uma potência de 15 Megatons - foi duas vezes mais poderosa do que o previsto. Aparte este problema, a arma gerou também uma grande quantidade de cinzas radioativas, mais do que a antecipada, e uma mudança no padrão climático provocou a dispersão das cinzas numa direção que não tinha sido evacuada a tempo.

A mancha de cinzas espalhou altos níveis de radiação por mais de 160 km, contaminando várias ilhas habitadas em atóis vizinhos (as populações tiveram de serem evacuadas, muitas sofrendo de queimaduras de radiação e, mais tarde, de outros efeitos como elevada taxa de cancro e de defeitos de nascença.

sábado, 19 de setembro de 2009

Ligação de Hidrogênio

As ligações de hidrogênio são interações que ocorrem entre o íons de hidrogênio e dois ou mais átomos, de forma que o hidrogênio sirva de "elo" entre os átomos com os quais interage. São as interações intermoleculares mais intensas, medidas tanto sob o ponto de vista energético quanto sob o ponto de vista de distâncias interatômicas.
A ligação no hidrogênio é um dos casos especiais da tabela periódica pois na ligação covalente ou iónica que consiste na troca ou surgimento de eletrons o hidrogênio fica estável apenas com dois eletrons na sua camada de valência. O átomo de hidrogênio, em vez de se unir a um só átomo de oxigênio, pode se unir simultaneamente a dois átomos de oxigênio, formando uma ligação entre eles. Essa ligação é chamada ligação de hidrogênio e se forma sobretudo com os elementos muito eletronegativos (F;O;N). Entretanto esta ligação,do tipo eletrostático, não é muito firme, sendo preferível respresentá-la em pontilhado ou em tracejado nas fórmulas.
Existem dois tipos de ligação de hidrogenio: a intramolecular e a intermolecular. A ligação intramolecular se faz na mesma molécula e a intermolecular se faz entre duas moléculas.


Explicação

Por exemplo, um átomo de hidrogênio de uma molécula de água (H2O) interage com átomos de oxigênio das moléculas vizinhas. Todas as características e propriedades físicas particulares da água resultam de sua estrutura molecular. A diferença de eletronegativida deentre os átomos de hidrogênio e de oxigênio gera uma separação de cargas. Assim, os átomos ligeiramente positivos de hidrogênio de uma molécula interagem com os átomos parcialmente negativos de oxigênio de outra molécula vizinha. Essas ligações criam uma cadeia que pode se rearranjar muitas vezes, permitindo que a água líquida flua em toda parte. Os átomos de hidrogênio e oxigênio podem interagir com muitos tipos de moléculas diferentes, razão pela qual a água é considerada o solvente mais poderoso conhecido. Essa ligação dá uma notável característica à água: a tensão superficial
As ligações de hidrogênio também existem dentro de uma mesma molécula, como nas proteínas e RNAEm ambos os casos elas são importantes na manutenção da estrutura da macromolécula. Além disso, sua baixa energia (1 a 10 kJ/mol) permite o rompimento da ligação com o aumento da tempertatura, daí os eventos de desnaturação das proteínas e do RNA, além da dissociação da dupla fita de DNAObservação: Hidrogênio em ponte é quando o átomo de hidrogênio está ligado a dois outros átomos por ligações covalentes, como no caso do diborano.

Segurança e precauções

O hidrogênio gera vários perigos à segurança humana, de potenciais detonações e incêndios quando misturado com o ar a ser um asfixiante em sua forma pura, livre de oxigênio. Em adição, hidrogênio líquido é um criogênico e apresenta perigos (como congelamento) associados a líquidos muito gelados. O elemento dissolve-se em alguns metais, e, além de vazar, pode ter efeitos adversos neles, como a fragilização por hidrogênio. O vazamento de gás hidrogênio no ar externo pode espontaneamente entrar em combustão. Além disso, o fogo de hidrogênio, enquanto sendo extremamente quente, é quase invisível, e portanto pode levar a queimaduras acidentais.
Até mesmo interpretar os dados do hidrogênio (incluindo dados para a segurança) é confundido por diversos fenômenos. Muitas propriedades físicas e químicas do hidrogênio dependem da taxa de para-hidrogênio/orto-hidrogênio (geralmente levam-se dias ou semanas em uma dada temperatura para alcançar a taxa de equilíbrio, pelo qual os resultados usualmente aparecem. os parâmetros de detonação do hidrogênio, como a pressão e temperatura críticas de detonação, dependem muito da geometria do contenedor.







A explosão no dirigível Hindenburg.

Combustão

Gás hidrogênio (dihidrogênio) é altamente inflamável e queimará em concentrações de 4% ou mais H2 no ar. A entalpia de combustão para o hidrogênio é −286 kJ/mol; ele queima de acordo com a seguinte equação balanceada.



2 H2(g) + O2(g) → 2 H2O(l) + 572 kJ (286 kJ/mol)




Quando misturado com oxigênio por entre uma grande variedade de proporções, o hidrogênio explode por ignição. Hidrogênio queima violentamente no ar, tendo ignição automaticamente na temperatura de 560 °C. Chamas de hidrogênio-oxigênio puros queimam no alcance de cor ultravioleta e são quase invisíveis a olho nu, como ilustrado pela faintness da chama das turbinas principais do ônibus espacial (ao contrário das chamas facilmente vísiveis do foguete acelerador sólido). Então ele necessita de um detector de chama para detectar se um vazamento de hidrogênio está queimando. A explosão do dirigível Hindenburg foi um caso infame de combustão de hidrogênio; a causa é debatida, mas os materiais combustíveis na pele do dirigível foram responsáveis pela coloração das chamas.outra característica dos fogos de hidrogênio é que as chamas tendem a ascender rapidamente com o gás no ar, como ilustrado pelas chamas do Hindenburg, causando menos dano que fogos de hidrocarboneto. Dois terços dos passageiros do Hindenburg sobreviveram ao incêndio, e muitas das mortes que ocorreram foram da queda ou da queima do combustível diesel. H2 reage diretamente com outros elementos oxidantes. Uma reação violenta e espontânea pode ocorrer em temperatura ambiente com cloro e flúor, formando os hálitos de hidrogênio correspondentes: Cloreto de hidrogênio e fluoreto de hidrogênio





A Turbina Principal do Ônibus Espacial queima hidrogênio líquido com oxigênio puro, produzindo uma chama quase invisível.

Reações biológicas

H2 é um produto de alguns tipos de metabolismo anaeróbico e é produzido por vários microorganismos, geralmente via reações catalizadas por enzimas contendo ferro ou níquel chamadas hidrogenases. Estas enzimas catalizam a reação redox reversível entre H2 e seus componentes, dois prótons e dois elétrons. A criação de gás hidrogênio ocorre na transferência para reduzir eqüivalentes produzidos durante fermentação do piruvato à água.
A separação da água, na qual a água é decomposta em seus componentes prótons, elétrons, e oxigênio, ocorre na fase clara em todos os organismos fotossintéticos. Alguns organismos — incluindo a alga Chlamydomonas reinhardtii e cianobactéria — evoluiram um passo adiante na fase escura na qual prótons e elétrons são reduzidos para formar gás H2 por hidrogenases especializadas no cloroplasto.sforços foram feitos para modificar geneticamente as hidrogenases das cianobactérias para sintetizar o gás H2 eficientemente mesmo na presença de oxigênio. Esforços também foram tomados com com algas geneticamente modificadas em um bioreator.

Aplicações

Grandes quantidades de H2 são necessárias nas indústrias de petróleo e química. A maior aplicação de H2 é para o processamento ("aprimoramento") de combustíveis fósseis, e na produção de amoníaco. Os principais consumidores de H2 em uma fábrica petroquímica incluem hidrodesalquilação, hidrodessulfurização, e hidrocraqueamento. H2 também possui diversos outros usos importantes. H2 é utilizado como um agente hidrogenizante, particularmente no aumento do nível de saturação de gorduras insaturadas e óleos (encontrado em itens como margarina), e na produção de metanol. É semelhantemente a fonte de hidrogênio na manufatura de ácido clorídrico. H2 também é usado como um agente redutor de minérios metálicos.Além de seu uso como um reagente, o H2 possui amplas aplicações na física e engenharia. É utilizado como um gás de proteção nos métodos de soldagem como soldagem de hidrogênio atômico. H2 é usado como cooler de geradores em usinas, por que tem a maior conductividade térmica de qualquer gás. H2 líquido é usado em pesquisas crio gênicas, incluindo estudos de supercondutividade. Uma vez que o H2 é mais leve que o ar, tendo um pouco mais do que 1/15 da densidade do ar, foi certa vez vastamente usado como um gás de levantamento em balões e dirigíveis.Em aplicações mais recentes, o hidrogênio é utilizado puro ou misturado com nitrogênio (às vezes chamado de forming gas) como um gás rastreador para detectar vazamentos. Aplicações podem ser encontradas nas indústrias automotiva, química, de geração de energia, aeroespacial, e de telecomunicações. drogênio é um aditivo alimentar autorizado (E 949) que permite o teste de vazamento de embalagens, entre outras propriedades antioxidantes.Os isótopos mais raros do hidrogênio também possuem aplicações específicas para cada um. Deutério (hidrogênio-2) é usado em aplicações de fissão nuclear como um moderador para nêutrons lentos, e nas reações de fusão nuclear. Compostos de deutério possuem aplicações em química e biologia nos estudos da reação dos efeitos de isótopos. Trítio (hidrogênio-3), produzido em reatores nucleares, é utilizado na produção de bombas de hidrogênio, como um selo isotópico nas ciências biológicas, e como uma fonte de radiação em pinturas luminosas.A temperatura de equilíbrio do hidrogênio em ponto triplo é um ponto fixo definido na escala de temperatura ITS-90 à 13.8033 kelvins.

Portador de Energia

Hidrogênio não é um recurso de energia,exceto no contexto hipotético das usinas comerciais de fusão nuclear usando deutério ou trítio, uma tecnologia atualmente longe de desenvolvimento. A energia do Sol origina-se da fusão nuclear de hidrogênio, mas este processo é difícil de alcançar controlavelmente na Terra. Hidrogênio elementar de fontes solares, biológicas ou elétricas requerem mais energia para criar do que é obtida ao queimá-lo, então, nestes casos, o hidrogênio funciona como um portador de energia, como uma bateria. Ele pode ser obtido de fontes fósseis (como metano), mas estas fontes são insustentáveis.A densidade de energia por unidade volume de ambos hidrogênio líquido e gás de hidrogênio comprimido em qualquer pressão praticável é significantemente menor do que aquela de fontes tradicionais de combustível, apesar da densidade de energia por unidade massa de combustível é mais alta. Todavia, o hidrogênio elementar tem sido amplamente discutido no contexto da energia, como um possível portador de energia futuro em uma grande escala da economia.] Por exemplo, CO2 sequestramento seguido de captura e armazenamento de carbono poderia ser conduzido ao ponto da produção de H2 a partir de combustíveis fósseis. O hidrogênio usado no transporte queimaria relativamente limpo, com algumas emissões de NOx, porém sem emissões de carbono. Entretanto, os custos de infraestrutura associados com a conversão total a uma economia de hidrogênio seria substancial

Isótopos

O isótopo mais comum do hidrogênio não possui nêutrons, existindo outros dois, o deutério (D) com um e o trítio (T), radioativo com dois. O deutério tem uma abundância natural compreendida entre 0,0184 e 0,0082% (IUPAC). O hidrogênio é o único elemento químico que tem nomes e símbolos químicos distintos para seus diferentes isótopos.
O hidrogénio possuiu ainda outros isótopos altamente instáveis (do 4H ao 7H) e que foram sintetizados em laboratório, mas nunca observados na natureza.
¹H, conhecido como prótio, é o isótopo mais comum do hidrogénio com uma abundância de mais de 99,98%. Devido a que o núcleo deste isótopo é formado por um só protão ele foi baptizado como prótio, nome que apesar de ser muito descritivo, é pouco usado.
²H, o outro isótopo estável do hidrogénio, é conhecido como deutério e o seu núcleo contém um protão e um neutrão. O deutério representa 0,0026% ou 0,0184% (segundo seja em fracção molar ou fracção atómica) do hidrogénio presente na Terra, encontrando-se as menores concentrações no hidrogénio gasoso, e as maiores (0,015% ou 150 ppm) em águas oceânicas. O deutério não é radioactivo, e não representa um risco significativo de toxicidade. A água enriquecida em moléculas que incluem deutério no lugar de hidrogénio ¹H (prótio), denomina-se água pesada. O deutério e seus compostos empregam-se em marcações não radioactivas em experiências e também em dissolventes usados em espectroscopia ¹H - RMN. A água pesada utiliza-se como moderador de neutrões e refrigerante em reactores nucleares. O deutério é também um potencial combustível para a fusão nuclear com fins comerciais.
³H é conhecido como trítio e contém um protão e dois neutrões no seu núcleo. é radioactivo, desintegrando-se em ³2He+ através de uma emissão beta. Possui uma meia-vida de 12,33 anos. Pequenas quantidades de trítio encontram-se na natureza por efeito da interacção dos raios cósmicos com os gases atmosféricos. Também foi libertado trítio para a realização de provas de armamento nuclear. O trítio usa-se em reacções de fusão nuclear, como traçador em Geoquímica Isotópica, e em dispositivos luminosos auto-alimentados. Antes era comum empregar o trítio como radiomarcador em experiências químicas e biológicas, mas actualmente usa-se menos.
O hidrogénio é o único elemento que possui diferentes nomes comuns para cada um de seus isótopos (naturais). Durante o começo dos estudos sobre a radioactividade, a alguns isótopos radioactivos pesados foram-lhes atribuídos nomes, mas nenhum deles se continua a usar). Os símbolos D e T (em lugar de ²H e ³H) usam-se às vezes para referir-se ao deutério e ao trítio, mas o símbolo P corresponde ao fósforo e, portanto, não pode usar-se para representar o prótio. A IUPAC declara que ainda que o uso destes símbolos seja comum, ele não é aconselhado.








Prótio, deutério e trítio

Níveis de energia do elétron

O nível de energia em estado fundamental do elétron de um átomo de hidrogênio é −13.6 eV, o que é equivalente a um fóton ultravioleta de aproximadamente 92 nm.
Os níveis de energia do hidrogênio podem ser calculados razoavelmente com precisão usando o modelo de Bohr para o átomo, o qual conceitualiza o elétron como "orbitando" o próton em analogia à órbita da Terra em relação ao Sol. Entretanto, a força eletromagnética atrai elétrons e prótons para cada um, enquanto planetas e objetos celestiais são atraídos uns aos outros pela gravidade. Por causa da discretização do momento angular postulado por Bohr no começo da mecânica quântica, o elétron no modelo de Bohr pode somente ocupar certas distâncias permitidas do próton, e portanto, somente certas energias permitidas.
Uma descrição mais precisa do átomo de hidrogênio parte de um tratamento puramente mecânico quântico que utiliza a equação de Schrödinger ou a equivalente integração funcional de Feynman para calcular a densidade de probabilidade do elétron perto do próton.
Representação de um átomo de hidrogênio mostrando o diâmetro de quase o dobro do raio do átomo de Bohr.

Formas moleculares elementais

Existem duas moléculas diatômicas diferentes de isômeros spin de hidrogênio que diferem pelo spin relativo de seu núcleo. Na forma de orto-hidrogênio, os spins dos dois prótons são paralelos e formam um estado triplo; na forma de para-hidrogênio, os spins são antiparalelos e formam um singular. Nas condições normais de temperatura e pressão, o gás hidrogênio contém aproximadamente 25% da forma para- e 75% da forma orto-, também conhecido como a "forma normal". A taxa de equilíbrio de orto-hidrogênio para para-hidrogênio depende da temperatura, mas já que a forma orto- é um estado excitado e possui energia mais alta que a forma para-, é instável e não pode ser purificado. Em temperaturas muito baixas, o estado de equilíbrio é composto quase exclusivamente da forma para-. As propriedades físicas do para-hidrogênio puro diferem ligeiramente daquelas da forma normal. A distinção orto-/para- também ocorre em outros grupos funcionais ou moléculas que contêm hidrogênio, como água e metileno
A interconversão não-$atalisada entre para- e orto- H2 aumenta com a temperatura crescente; portanto, H2 rapidamente condensado contém grandes quantidades da forma orto- de alta energia que convertem para a forma para- muito lentamente. A taxa orto-/para- no H2 condensado é uma consideração importante na preparação e armazenagem do hidrogênio líquido: a conversão de orto- para para- é exotérmica e produz calor suficiente para evaporar o hidrogênio líquido, levando a perda do material liquefeito. Catalizadores para a interconversão orto-/para-, como o óxido férrico, carbono ativado, asbesto platinizado, raros metais alcalinos-terrosos, compostos de urânio, óxido crômico, ou compostos de níquel, são usados durante o resfriamento de hidrogênio.
Uma forma molecular chamada hidrogênio protonado molecular, ou H3+, é encontrado no meio interestelar, onde ele é gerado pela ionização do hidrogênio molecular dos raios cósmicos. Também tem sido observado na atmosfera mais alta do planeta Júpiter. Esta molécula é relativamente estável no ambiente do espaço sideral devido a baixa temperatura e densidade. H3+ é um dos íons mais abundantes no Universo, e possui um papel notável na química do meio interestelar.
Primeiras faixas observadas em uma câmara de bolhas de hidrogênio líquido no Bevatron

Produção

O gás H2 é produzido em laboratórios de química e biologia, muitas vezes como sub-produto da desidrogenação de substratos insaturados; e na natureza como meio de expelir equivalentes redutores em reacções bioquímicas

Laboratório

No laboratório, o gás H2 é normalmente preparado pela reacção de ácidos com metais tais, como o zinco, por meio do aparelho de Kipp.Zn + 2 H+ → Zn2+ + H2O alumínio também pode produzir H2 após tratamento com bases:2 Al + 6 H2O + 2 OH- → 2 Al(OH)4- + 3 H2A electrólise da água é um método simples de produzir hidrogénio. Uma corrente elétrica de baixa voltagem corre através da água, e oxigénio gasoso forma-se no ânodo enquanto que hidrogénio gasoso forma-se no cátodo. Tipicamente, o cátodo é feito de platina ou outro metal inerte (geralmente platina ou grafite) quando se produz hidrogénio para armazenamento. Se, contudo, o gás destina-se a ser queimado no local, é desejável haver oxigénio para assistir à combustão, e então ambos os eléctrodos podem ser feitos de metais inertes (eletrodos de ferro devem ser evitados, uma vez que eles consumiriam oxigênio ao sofrerem oxidação). A eficiência máxima teórica (electricidade usada versus valor energético de hidrogénio produzido) está entre 80 e 94%.2H2O(aq) → 2H2(g) + O2(g)Em 2007, descobriu-se que uma liga de alumínio e gálio em forma de pastilhas adicionada a água podia ser usada para gerar hidrogénio. O processo também produz alumina, mas o gálio, que previne a formação de uma película de óxido nas pastilhas, pode ser reutilizado. Isto tem potenciais implicações importantes para a economia baseada no hidrogénio, uma vez que ele pode ser produzido no local e não precisa de ser transportado.

Termoquímicos solares

Alguns laboratórios (incluindo França, Alemanha, Grécia, Japão e os EUA) estão a desenvolver métodos termoquímicos para produzir hidrogénio a partir de energia solar e água.


Indústrial

O hidrogénio pode ser preparado por meio de várias processos mas, economicamente, o mais importante envolve a remoção de hidrogénio de hidrocarbonetos. Hidrogénio comercial produzido em massa é normalmente produzido pela reformação catalítica de gás natural. A altas temperaturas (700-1100 °C), vapor de água reage com metano para produzir monóxido de carbono e H2.CH4 + H2O → CO + 3 H2Esta reacção é favorecida a baixas pressões mas é no entanto conduzida a altas pressões (20 atm) uma vez que H2 a altas pressões é o produto melhor comercializado. A mistura produzida é conhecida como "gás de síntese" porque é muitas vezes usado directamente para a produção de metanol e compostos relacionados. Outros hidrocarbonetos além do metano podem ser usados para produzir gás de síntese com proporção de produtos variáveis. Uma das muitas complicações para esta tecnologia altamente optimizada é a formação de carbono:CH4 → C + 2 H2Por consequência, a reformação catalítica faz-se tipicamente com excesso de H2O. Hidrogénio adicional pode ser recuperado do vapor usando monóxido de carbono através da reacção de mudança do vapor de água, especialmente com um catalisador de óxido de ferro. Esta reacção é também uma fonte industrial comum de dióxido de carbono:CO + H2O → CO2 + H2Outros métodos importantes para a produção de H2 incluindo oxidação parcial de hidrocarbonetos:2 CH4 + O2 → 2 CO + 4 H2e a reacção de carvão, que pode servir como prelúdio para a "reacção de mudança" descrito acimaC + H2O → CO + H2Hidrogénio é por vezes produzido e consumido pelo mesmo processo industrial, sem ser separado. No processo de Haber para a produção de amoníaco, é gerado hidrogénio a partir de gás natural. Electrólise de salmoura para produzir cloro também produz hidrogénio como produto secundário.

Compostos

Compostos Orgânicos e Covalentes


Apesar do hidrogênio, em sua forma gasosa (H2) não reagir muito nas CNTP, em sua forma atômica ele está combinado com a maioria dos elementos da Tabela Periódica, formando compostos com diferentes propriedades químicas e físicas. Ele pode formar compostos com elementos mais eletronegativos, tais como os do grupo 17 da Tabela Periódica (halogênios: (F, Cl, Br, I); nestes compostos, o hidrogênio é marcado por atrair para si uma carga parcial positiva. Quando unido a flúor, oxigênio, ou nitrogênio, o hidrogênio pode participar na forma de forte ligação não-covalente chamada ligação de hidrogênio, que é essencial à estabilidade de muitas moléculas biológicas. Hidrogênio também forma compostos com menos elementos eletronegativos, como metais e semimetais, nos quais gera uma carga parcial negativa. Estes compostos são geralmente conhecidos como hidretos.
Quando o hidrogênio se combina com o carbono, ele pode formar uma infinidade de compostos. Devido à marcante presença destes compostos nos organismos vivos, eles vieram a ser chamados de compostos orgânicos; o ramo da química que estuda as propriedades destes compostos é conhecido como Química Orgânica e seu estudo no contexto de organismos vivos é conhecido como bioquímica. Por algumas definições, compostos "orgânicos" necessitam apenas da condição de conter carbono. Entretanto, a maior parte destes compostos também contém o hidrogênio e, uma vez que é a ligação carbono-hidrogênio que dá a esta classe de compostos suas características químicas particulares, isso faz com que algumas definições de "Química Orgânica" incluam a presença de ligações químicas entre carbono-hidrogênio.
Na Química Inorgânica, hidretos podem também servir como ligantes de ponte, responsáveis pelo elo entre dois centros metálicos em um composto de coordenação. Esta função é particularmente comum em elementos do grupo 13, especialmente em boranos (hidretos de boro) e complexos de alumínio, assim como em carboranos agrupados.
Na natureza conhece-se milhões de hidrocarbonetos mas eles não são formados pela reação direta do hás hidrogênio com o carbono (apesar da produção de gás de síntese segundo o processo de Fischer-Tropsch para criar hidrocarbonetos ter chegado próxima de ser uma exceção, uma vez que isto inicia-se com carvão e o hidrogênio elementar é gerado no local).

Hidretos

Compostos de hidrogênio são freqüentemente chamados de hidretos, um termo que é usado bem livremente. Para químicos, o termo "hidreto" geralmente implica que o átomo H adquiriu um caráter negativo ou aniônico, denotados H−. A existência do aniôn hidreto, sugerida por Gilbert N. Lewis em 1916 para hidretos similares ao sal nos grupos I e II, foi demonstrada por Moers em 1920 com a eletrólise de hidreto de lítio (LiH) derretido, que produziu uma quantidade de hidrogênio estequiométrica no ânodo.[ Para outros hidretos além dos metais de grupo I e II, o termo é bem enganoso, considerando a eletronegatividade de hidrogênio baixa. Uma exceção nos hidretos do grupo II é BeH2, o qual é polimérico. No hidreto de alumínio e lítio, o ânion AlH4− carrega centros hidreticos firmamente ligados ao Al(III). Ainda que hidretos podem ser formados com quase todos os elementos do grupo principal, o número e combinação de possíveis compostos varia vastamente; por exemplo, existem mais de 100 hidretos binários de borano conhecidos, mas somente um hidreto binário de alumínio. Hidreto binário de ainda não foi identificado, apesar de complexos mais largos existirem.

Prótons e ácidos


Oxidação de hidrogênio, a fim de remover seu elétron, formalmente gera H+, não contendo elétrons e um núcleo, que é geralmente composto de um próton. É por isso que H+ é frequentemente chamado de próton. Esta espécie é central à discussão de ácidos. Sob a teoria de Brønsted-Lowry, ácidos são doadores de prótons, enquanto bases são receptores de prótons.
Um próton H+ puro não pode existir em solução devido a sua forte tendência de se ligar a átomos ou moléculas com elétrons. Entretanto, o termo 'próton' é usado livremente para se referir ao hidrogênio de carga positiva ou catiônico, denotado H+.
Para evitar a ficção conveniente do "próton em solução" nu, soluções ácidas aquáticas são às vezes consideradas a conter o íon hidrônio (H3O+), que é organizado em grupos para formar H9O4+. Outros íons oxônio são encontrados quando a água está em solução com outros solventes.
Ainda que exóticos na terra, um dos íons mais comuns no universo é o íon H3+, conhecido como hidrogênio protonado molecular ou cátion trihidrogênio.

Ocorrência natural

Hidrogênio é o elemento mais abundante no universo, compondo 75% da matéria normal por massa e mais de 90% por número de átomos. Este elemento é encontrado em grande abundância em estrelas e planetas gigantes de gás. Nuvens moleculares de H2 são associadas a formação de estrelas. O elemento tem um papel vital em dar energia as estrelas através de cadeias próton-próton e do ciclo CNO de fusão nuclear.
Pelo universo, o hidrogênio é geralmente encontrado nos estados atômico e plasma, cujas propriedades são bem diferentes do hidrogênio molecular. Como plasma, o elétron e o próton de hidrogênio não são ligados, resultando em uma condutividade elétrica muito alta e alta emissividade (produzindo a luz do Sol e outras estrelas). As partículas carregadas são altamente influenciadas por campos elétricos e magnéicos. Por exemplo, no vento solar elas interagem com a magnetosfera da Terra, fazendo surgir as correntes de Birkeland e a aurora. Hidrogênio é encontrado em estado atômico neutro no meio interestelar. Acredita-se que a grande quantidade de hidrogênio neutro encontrado nos sistemas úmidos Lyman-alfa domina a densidade cosmológica bariônica do Universo até o desvio para o vermelho z=4.
Em Condições Normais de Temperatura e Pressão na Terra, o hidrogênio existe como um gás diatómico, H2 (para dados ver tabela). Entretanto, o gás de hidrogênio é muito raro na atmosfera da Terra (1 ppm por volume) devido ao seu peso leve, o que o possibilita escapar da gravidade da Terra mais facilmente que gases mais pesados. Entretanto, o hidrogênio (na forma combinada quimicamente) é o terceiro elemento mais abundante na superfície da Terra. A maior parte do hidrogênio da Terra está na forma de compostos químicos tais como hidrocarbonetos e água. O gás de hidrogênio é produzido por algumas bactérias e algas, e é um componente natural do flato. Metano é uma fonte de hidrogênio de crescente importância.
NGC 604, uma gigante região de hidrogênio ionizado na Galáxia do Triângulo

Papel na Teoria Quântica

Linhas do espectro de emissões do hidrogênio na região do visível. Estas são as quatro linhas visíveis da série de Balmer
Devido a sua estrutura atômica relativamente simples, consistindo somente de um próton e um elétron, o átomo de hidrogênio, junto com o espectr o de luz produzido por ele ou absorvido por ele, foi de suma importância ao desenvolvimento da teoria da estrutura atômica. Além disso, a simplicidade correspondente da molécula de hidrogênio e o cátion correspondente H2+ permitiu um total entendimento da natureza da ligação química, que seguiu pouco depois do tratamento mecânico quântico do átomo de hidrogênio ter sido desenvolvimento na metade dos anos 1920.
Um dos primeiros efeitos quânticos a ser explicitamente notado (mas não entendido naquela época) foi a observação de Maxwell envolvendo hidrogênio, meio século antes da teoria da mecânica quântica completa aparecer. Maxwell observou que o calor específico de H2 inexplicavelmente se afasta daquele de um gás diatômico abaixo da temperatura ambiente e começa a parecer gradativamente com aquele de um gás monoatômico em temperaturas criogênicas. Segundo a teoria quântica, este comportamento surge do espaçamento dos níveis de energia rotativos (quantificados), os quais são particularmente bem espaçados em H2 por causa de sua pouca massa. Estes níveis largamente espaçados inibem partições iguais da energia de calor em movimentos rotativos em hidrogênio sob baixas temperaturas. Gases diatômicos compostos de átomos mais pesados não possuem níveis tão largamente espaçados e não exibe o mesmo efeito.

Linhas do espectro de emissões do hidrogênio na região do visível. Estas são as quatro linhas visíveis da série de Balmer

Descoberta e uso do Hidrogênio


O gás hidrogênio, H2, foi o primeiro produzido artificialmente e formalmente descrito por T. Von Hohenheim (também conhecido como Paracelso, 1493–1541) através de uma mistura de metais com ácidos fortes.] Ele não sabia que o gás inflamável produzido por esta reação química era um novo elemento químico. Em 1671, Robert Boyle redescobriu e descreveu a reação entre limalhas de ferro e ácidos diluídos, o que resulta na produção de gás hidrogênio. Em 1766, Henry Cavendish foi o primeiro a reconhecer o gás hidrogênio como uma discreta substância, ao identificar o gás de uma reação ácido-metal como "ar inflamável" e descobrindo mais profundamente, em 1781, que o gás produz água quando queimado. A ele geralmente é dado o crédito pela sua descoberta como um elemento. Em 1783, Antoine Lavoisier deu ao elemento o nome de hidrogênio (do grego υδρώ (hydro), água e γένος-ου (genes), gerar) quando ele e Laplace reproduziram a descoberta de Cavendish, onde água é produzida quando hidrogênio é queimado.
Hidrogênio foi liquefeito pela primeira vez por James Dewar em 1898 ao usar resfriamento regenerativo e sua invenção se aproxima muito daquilo que conhecemos como garrafa térmica nos dias de hoje. Ele produziu hidrogênio sólido no ano seguinte. O deutério foi descoberto em dezembro de 1931 por Harold Urey, e o trítio foi preparado em 1934 por Ernest Rutherford, Marcus Oliphant, e Paul Harteck. A água pesada, que consiste em deutério no lugar de hidrogênio regular, foi descoberta pela equipe de Urey em 1932. François Isaac de Rivaz construiu o primeiro dispositivo de combustão interna movido por uma mistura de hidrogênio e oxigênio em 1806. Edward Daniel Clarke inventou o cano de sopro de gás hidrogênio em 1819. A lâmpada de Döbereiner e a Luminária Drummond foram inventadas em 1823. O enchimento primeiro balão com gás hidrogênio, foi documentado por Jacques Charles em 1783. O hidrogênio provia a subida para a primeira maneira confiável de viagem aérea seguindo a invenção do primeiro dirigível decolado com hidrogênio em 1852, por Henri Giffard. O conde alemão Ferdinand von Zeppelin promoveu a idéia de usar o hidrogênio em dirigíveis rígidos, que mais tarde foram chamados de Zeppelins; o primeiro dos quais teve seu vôo inaugural em 1900. Vôos programados regularmente começaram em 1910 e com o surgimento da Primeira Guerra Mundial em agosto de 1914, eles haviam transportado 35.000 passageiros sem qualquer incidente sério. Dirigíveis levantados por hidrogênio foram usados como plataformas de observação e bombardeadores durante a guerra.
O primeiro cruzamento transatlântico sem escalas foi realizado pelo dirigível britânico R34 em 1919. Com o lançamento do Graf Zeppelin nos anos 1920 o serviço regular de passageiros prosseguiu entre a Alemanha e o Rio de Janeiro Brasil até meados dos anos 1930 sem nenhum acidente. Com a descoberta de reservas de um outro tipo de gás leve nos Estados Unidos esse projeto deveria sofrer modificações, já que o outro elemento prometia um aumento na segurança, mas o governo dos E.U.A. se recusou a vender o gás para este propósito. Sendo assim, H2 foi usado no dirigível Hindenburg, o qual foi destruído em um incidente em pleno vôo sobre New Jersey no dia 6 de maio de 1937. O incidente foi transmitido ao vivo no rádio e filmado. A ignição do vazamento de hidrogênio foi vastamente acreditada como sendo a causa, mas investigações posteriores apontaram à ignição do revestimento de tecido aluminizado pela eletricidade estática. Porém o dano à reputação do hidrogênio como um gás de levantamento já estava feito.

O Hidrogênio


O hidrogénio (português europeu) ou hidrogênio (português brasileiro) (pronuncia-se /idɾɔˈʒɛniu/ ou /idɾɔˈʒeniu/ de hidro + gênio, ou do fr. hidrogène e admitindo-se a grafia dupla pelo acordo ortográfico) é um elemento químico com número atômicoPB ou atómico PE 1 e representado pelo símbolo H. Com uma massa atómica de aproximadamente 1,0 u, o hidrogênio é o elemento menos denso. Ele geralmente apresenta-se em sua forma molecular, formando o gás diatômico (H2) nas CNTP. Este gás é inflamável, incolor, inodoro, não-metálico, insípido e insolúvel em água.
O elemento hidrogênio, por possuir propriedades distintas, não se enquadra claramente em nenhum grupo da tabela periódica, sendo muitas vezes colocado no grupo 1 (ou família 1A) por possuir apenas 1 próton.
O Hidrogênio é o mais abundante dos elementos químicos, constituindo aproximadamente 75% da massa elementar do Universo. Estrelas na sequência principal são compostas primariamente de hidrogênio em seu estado de plasma. O Hidrogênio elementar é relativamente raro na Terra, e é industrialmente produzido a partir de hidrocarbonetos presentes no gás natural, tais como metano, após o qual a maior parte do hidrogênio elementar é usada "em cativeiro" (o que significa localmente no lugar de produção). Os maiores mercados do mundo fazem uso do hidrogênio para o aprimoramento de combustíveis fósseis (no processo de hidrocraqueamento) e na produção de amoníaco (maior parte para o mercado de fertilizantes). O hidrogênio também pode ser obtido por meio da eletrólise da água, porém, este processo é atualmente dispendioso, o que privilegia sua produção a partir do gás natural.
O isótopo do hidrogênio que possui maior ocorrência, conhecido como prótio, é formado por um único próton e nenhum nêutron. Em compostos iônicos pode ter uma carga positiva (se tornando um cátion) ou uma carga negativa (se tornando o ânion conhecido como hidreto). Também pode formar outros isótopos, como o deutério, com apenas um nêutron, e o trítio, com dois nêutrons. Em 2001, foi criado em laborário o isótopo 4H e, a partir de 2003, foram sintetizados os isótopos 5H até 7H. O elemento hidrogênio forma compostos com a maioria dos elementos, está presente na água e na maior parte dos compostos orgânicos. Possui um papel particularmente importante na química ácido-base, na qual muitas reações envolvem a troca de prótons entre moléculas solúveis. Como o único átomo neutro pelo qual a Equação de Schrödinger pode ser resolvida analiticamente; o estudo energético e de ligações do átomo hidrogênio teve um papel principal no desenvolvimento da mecânica quântica.
A solubilidade e características do hidrogênio com vários metais são muito importantes na metalurgia (uma vez que muitos metais podem sofrer fragilidade em sua presença) e no desenvolvimento de maneiras seguras de estocá-lo para uso como combustível. É altamente solúvel em diversos compostos que possuem Terras-raras e metais de transição e pode ser dissolvido tanto em metais cristalinos e amorfos. A solubilidade do hidrogênio em metais é influenciada por distorções ou impurezas locais na estrutura cristalina do metal.